Food Poisoning and Consumer Complaint Cases Caused by Chemicals and Natural Toxins in Okinawa –2007–
Naomasa OSHIRO, Natsuko TERUYA, Satsuki SAKUGAWA, Ayuko KOJA

Abstract: Food poisoning and consumer complaint cases caused by natural toxins or chemical substance in Okinawa prefecture in the fiscal year 2007 are summarized as below.

A pufferfish poisoning due to consumption of a fish caught off Kunigami occurred. The patients took a soup containing flesh, liver and ovary of the puffer. The left over sample of the ovary showed toxicity level at 130 MU/g. The puffer was identified as *Lagophthalmus sceleratus* based on mtDNA analysis.

Bitter tasted fruit of gourd *Luffa cylindrica* was brought to our institute for investigation of principal substance. One of the spots developed on the Silicagel 70 FM-plate WAKO (CHCl₃/EtOAc (1:1)), shows same Rf value and color as those of cucurbitacin B.

A woman had burning sensation in her throat, cough, heartburn, nauseousness after ingestion of coffee contaminated with dish surfactant served at restaurant. HPLC chromatogram (linear alkylbenzene sulfonate) of the coffee was identical to that of surfactant used at the restaurant.

Two ciguatera fish poisoning occurred. In the first case, a man purchased two individual of the grouper *Anoptherodon leucogrammicus* from a fish dealer. The man cooked “miso-soup” and “sashimi” from a bigger specimen and consumed at lunch. He suffered backache, vomiting, thermoesthesia (dry-ice sensation), and fatigue. Although leftover food showed mouse lethality level at 0.1 MU/g, the smaller one had notoxicity. In the second case, six family members ingest “miso-soup” and “sashimi” cooked from a yellow-edged lyretail (lyretail grouper, coral trout) *Variola louti* purchased from fish dealer. Of which, three people consumed “miso-soup” showed symptoms of thermoesthesia (dry-ice sensation), paresthesia of mouth and fatigue. Other three people who ate only “sashimi” had not any abnormality. The leftover of “sashimi” showed toxicity level at 0.025MU/g.

Key words: food poisoning, pufferfish, surfactant, linear alkylbenzene sulfonate (LAS), *Variola louti*
II センニンフグによる食中毒

1. 概要

発生月日　平成19年 4月14日
発生場所　国頭村
摂食者数　2人
患者数　2人
死亡者数　0人
原因食品　魚汁（センニンフグ）
原因物質　テトドトキシン
原因経路　家庭
症状　しぼれ、倦怠感、脱力感

平成19年4月16日、県立病院の検査室より、食中毒
患者の検査に関する問い合わせがあった。その時点では、四
角い魚の摂食が原因かが疑問である症例を呈し
ているとの情報のみであった。直ちに国頭保健所へ届け出を
するよう伝えたところ、同日9時10分に届け出が
出された。

患者は60代の男性で、14日にお国頭村奥の沖合リーフ
外側で釣った体長約60 cmの魚を魚汁に調理して20時頃摂
食した。釣り上げた際、魚の腹部は膨らまず、前に新たな油を
摂食した経験があるが、その時には特に異常を感じなかった
ため、今回は肝臓と卵巣も一緒に調理した。1時間前後に
して呑む内に胸が膨らむことを、舌のしぼれ、手足の感覚異常が
でた。身体の異常を感じながらも就寝し、深夜にトイレ
へ起きたところ、倦怠感、脱力感が強く、立ち上がれな
い状態になったが、そのまま横になり、翌日7時頃、病院
救急外来を受診した。保健所職員により、聞き取り調査が
行われ、調査で原因魚種を確認してももらったところ、ゴマフグ
Takifugu stictonotus やヒビンフグ T. pectinatus に似て
いるようだが記憶が曖昧で、確認ができないということであ
った。

2. 検体

患者の食べ残しの魚汁

筋肉、肝臓、卵巣、その他に分けて、試験に供した。

3. 原因物質の検索

(1) 分析方法

1) 種の同定

外部形態による同定が困難であったため、ミトコンドリア
DNA (mtDNA) の16S rRNA基因のPCR後半部
領域の遺伝子配列を解析した。

筋肉試料5mgを採取し、切出した魚とDNeasy Tissue
Kit (QIAGEN) を使用してDNAを調製した。これを郵便
にプライマーエ対16Sar L (CGCCTGTTATACAAAACAT)
および、16Sbr H (CCGGTCGATACTCAGACGT) で
16S rRNAの後半領域を増幅した。PCR増幅産物を制限酵素
素 Nla III, Ban II, Dde Iでそれぞれ消化し、得られた断
片長のパターンを3%アガロースゲル電気泳動で確認した
(PCR-RFLP法)。

さらに、PCR増幅産物をWizard SV Gel and PCR
Clean-Up system (Promega) で処理し、BigDye Terminator
v3.1 (Applied Biosystems) の操作手順に従って、塩基配列
を決定した。

2) マウス毒性試験

食品衛生検査指針記載 2)の方法に基づいて実施した。鼠、肝臓、
腎臓および、卵巣は各5gを採取し、その他の部位は液体だ
けを5g採取した。それぞれの抽出物を蒸留水で適宜希釈し、
マウス(ddY系、オス)3尾ずつ腹腔内投与し、それぞれの中央値
から、致死時間マウス単位（MU）換算表及び、マウス体
重マウス単位補正表を用いて毒性を求めた 2)。

3) テトドトキシン(TTX)の分析

TTXの定量測定は、Horie et al. 3)のLC/MS 法により実施
したが、測定条件は微所の検出を用い最適化した
(表1)。マウス毒性試験で用いた抽出物をOASIS HLB カー
トリッジカラムに通過させ、さらに限外処過により高分子成
分を除去したものを適宜希釈し、標準添加法により測定した。
なお、TTXの添加量は0, 0.5, 1.0 µg/mlとし(n=3)、平均
値から試験液中のTTX含量を求めた。

(2) 分析結果

1) 種の同定

16S rRNA広範領域のPCR反応の結果、約600 bpの増
幅産物を得ることができた(図1)。

制限酵素 Nla IIIによる消化では、3本のバンドが確認さ
れ、センニンフグLagocephalus sceleratusのバンドバター
ン(149, 211, 254 bp)と一致した(図1)。さらに、Ban IIで

<table>
<thead>
<tr>
<th>表1. LC/MS法の分析条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>装置：Agilent 1100 Series LC/MS (Agilent Technologies)</td>
</tr>
<tr>
<td>カラム：Shodex Rspak NN-414 (150x4.6 mm id)</td>
</tr>
<tr>
<td>移動相：20mM ammonium acetate/methanol (75:25)</td>
</tr>
<tr>
<td>流速：0.5ml/min</td>
</tr>
<tr>
<td>カラム温度：40℃</td>
</tr>
<tr>
<td>注入量：5 µl</td>
</tr>
<tr>
<td>イオン化：ESI, Positive</td>
</tr>
<tr>
<td>フラグメント電圧：145 V</td>
</tr>
<tr>
<td>ネプライザー：N2 (60psi)</td>
</tr>
<tr>
<td>ドライガス：N2 (10 L/min, 350℃)</td>
</tr>
<tr>
<td>Vcap：5,000V</td>
</tr>
<tr>
<td>モニターアイオン：m/z320 [M+H]+</td>
</tr>
</tbody>
</table>
は2本のバンドが、Dde Iでは大きいバンドが1本確認されたが、いずれもセリノンのパターンと一致した（Ban II：119, 496 bp, Dde I：14, 209, 302 bp, 図1）。
また、PCR増幅産物の塩基配列（614 bp）検出され、セリノンの配列（AB194240）と完全に一致した。
以上のことより、食中毒の原因となったフグはセリノンフグと同定した。
2. 毒性試験
マウス法および、LC/MS法による検査結果は表2に示したとおりで、マウス法とLC/MS法ともに同様な結果となったため、原因物質はTTXであると結論づけた。
3. 考察
セリノンフグは沖縄県における塩中で比較的多く、フグであること、あるいは有毒であるとの認識がないまま摂食され、食中毒になってしまうケースである。本事例でも医療機関からの第一報では、「四角い魚」との情報で、フグであるとの認識はなかったようである。セリノンフグはすべての部位が有毒であり、特に卵巣は我々がスクリーニングを行った18個体すべてがTTXを保有していたことを報告している。本事例の卵巣には130 MU/g程度のTTXが含まれていた（表2）。ヒトの最小致死量は10,000 MU程度とされているため、80 g程度の摂取で死に至る可能性があった。夫は深夜にトイレに行くために起きて用をたたれたが、その後身体が疼痛し動けない状態のまま朝を迎え、卵巣中の毒性を考えると、致死量に近いTTXを摂取していたことが推測され、致命的でなかったのは幸運であるといえよう。
今回も原因種を推定するにあたり、患者に対し問診を確認してもらったところ、セリノンフグと螺のガマフグやコモンフグで示された。食中毒検体は、調理加工により外的形態による同定が困難であり、遺伝子解析による同定法の有効性が示された。

III 苦味ヘチャの相談事例
1. 概要
発生月日 平成19年7月5日
発生場所 西原町
摂食者数 不明
患者数 不明
死亡者数 不明
原因食品 ヘチャ
原因物質 クルビタシンB
原因施設 家庭

表1. PCR産物および制限酵素消化物の3%アガロースゲル電気泳動

レーン1: PCR産物, レーン2: Nla III消化物, レーン3: Ban II消化物, レーン4: Dde I消化物

表2. 食中毒検体のマウス毒性試験結果

<table>
<thead>
<tr>
<th>検体名</th>
<th>マウス法</th>
<th>LC/MS法**</th>
</tr>
</thead>
<tbody>
<tr>
<td>肝臟</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>肝臓</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>卵巣</td>
<td>126</td>
<td>135</td>
</tr>
<tr>
<td>血</td>
<td>42</td>
<td>47</td>
</tr>
</tbody>
</table>

*: 単位はMU/g
**: 1 MU = 0.22 µg

2. 検体
ヘチャ1(皮が剥がれた状態) 190.2 g
ヘチャ2(皮が剥がれた状態) 192.3 g
ヘチャ3(皮が剥がれた状態) 124.7 g
ヘチャ4(未処理の状態) 329.9 g
ヘチャ5(未処理の状態) 424.1 g

3. 原因物質の検索
(1) 分析方法
1) 官能試験
検体を外科用メスで切り取り、切断面を舌にのせ苦味の有無を確認した。
2) 深層クロマトグラフィー（TLC）
官能試験でクルンバジン頸性とされたものについては、TLCによる確認試験を実施した。検体10gにメタノール10mlを加え、10分間ホモジナイズし、遠心分離(2,000 rpm, 15分)後、上清をとると、沈殿層に異常な操作を繰り返した。上清をあわせて濃縮後、酢酸エチル5mlで2回抽出し、抽出液を蒸発乾燥後、クロロホルム0.2mlに溶解した。試験液およびクルンバジンBの標準品を薄層板（シリカゲル70FMブレートリコー）に塗布し、クロロホルム/酢酸エチル(1:1)で展開した。紫外線照射により、標準品と同じRf値と発色を示すものをクルンバジンBとした。
(2) 分析結果
官能試験の結果、ヘチャ2とヘチャ3が強い苦味を呈しており、ヘチャ3の苦味が強く、それ以外の検体は特に異常を認めなかった。官能試験で感度を判定された2検体についてTLCによる確認試験を実施したところ、クルンバジンBと同じRf値と発色を示した。
3) 考察
最近ではクルンバジンを原因とする食中毒は発生していないものの、強烈な苦味を訴える苦情相談は毎年報告されている。ヘチャのように、いわゆる島野菜と呼ばれる農作物は品種開発が不十分なため、まれにクルンバジンを産生する株が発見されている。今後、品種開発や栽培管理を含めた技術的対策が必要と思われる。

IV アイスコーヒーに混入した洗剤による食中毒事例

1. 概要
発生日時：平成19年9月11日
発生場所：宮古島市
摂取者数：1人
患者数：1人
死亡者数：0人
原因食品：アイスコーヒー（シロップ）
原因物質：食器用洗剤
原因施設：飲食店
症状：喉の炎症、喉焼け、吐き気
平成19年9月11日、昼食後の飲食店で食事をした際、提供されたアイスコーヒーにシロップを入れて飲んだ直後から、アルコールを飲用した際のような喉の灼熱感を感じ、喉がヒビリヒビリして喉をかき込んだ。その後、喉焼け、吐き気がしたため、宮古病院を受診した。保健所職員の調査により、シロップの中に食器用洗剤が混入している疑いがもたらされたため、分析を実施した。

2. 検体
アイスコーヒー（患者の飲み残し）
食器用洗剤（原因施設で使用しているもの）

3. 原因物質の検索
原因施設から採取した食器用洗剤は、ネオペレックスL-1000業務用中性洗剤で、成分表に界面活性剤(16％直鎖アルキルペンゼンシステム酸ナトリウム、アルキルエチル硫酸エステルナトリウム)とその記載があったため、衛生試験法注1、2005年度に食品衛生法を対象とした。なお、今回は「コーヒーに洗剤が混入していることを確認する」だけであったため、定量は実施せず、定性だけとした。

(1) 分析方法
分析法の検討のため、標準品として水質試験用LAS標準原液（関東化学株）を用いた。なお、コーヒーは外観からはんやミルクや砂糖などの不純物が多く含まれる可能性があったため、固相抽出（SPE）による前処理を行うこととした。
1) 蛍光HPLC法
LAS標準品の10 µg/ml (total)を調製し、蛍光HPLCで測定したところ、良好なクロマトグラムが得られた。測定条件は以下のとおりである。
カラム：Inertsil ODS-3, 5 µm, 4.6 x 150 mm
移動相：アセトニトリル／水 (65:35)
流速：1 ml/min
注入量：10 µl
検出器：蛍光検出器（Ex. 221 nm, Em. 284 nm）
2) 固相抽出法
洗浄原液100 mgを10 mlに希釈したものを用意し、その1 mlを蒸留水で50 mlに調製した。これを、あらかじめMeOH 5ml、蒸留水5mlでコンディショニングした固定相抽出カラムに注入した。カラムを蒸留水5mlで洗浄後MeOH 3mlで溶出した。これを蒸留水で希釈し10 mlとしたものを分析用試験液とした。なお、測定液の溶媒はメタノールよりも蒸留水の方がピーク面積が大きかったため、希釈は蒸留水とした。固相抽出カラムはInertSep (GL サイエンス)の60mg/3ml、250mg/6mlおよび、OASIS HLB 3cc (Waters) の3製品について検討を行った。InertSep 60mg/3mlとOASIS HLB 3ccは容量が小さいため回収率が悪く（31.9～51.7%）、特に保持時間の短いC10とC11では顕著であった。そのため、容量の大きいInertSep 250mg/6mlで確認をしたところ、回収率90.4～94.0%と良好であったため、これを
使用することとした。

3) 試料調製

洗剤原液は粘性が強かったため、まず2倍希釈液を調製し、
その1mlを蒸留水で50mlに調製した。この1mlを蒸留水
で10mlに調製し前処理の測定用溶液とした。洗剤100
倍希釈液1mlとコーヒー0.5mlをそれぞれ、蒸留水で50ml
に希釈し、あらかじめMeOH 5ml、蒸留水 5mlでコンディ-
ショニングしたInertSep 250mg/6mlに注入した。カラムを
蒸留水5mlで洗浄後、MeOH 3mlで溶出したものを蒸留水
で10mlに調製し、測定用溶液とした。

(2) 分析結果

洗剤1,000倍希釈液の保持時間およびピーク形状から、
LAS成分は主にC10、C11、C12およびC13から構成され、
C14のピークは確認されなかった。

コーヒーをSPE処理し測定したクロマトグラムは、混入
したと思われる洗剤のクロマトグラムと、各成分の保持時間
及びピーク形状が一致していた。

3) 考察

今回の事例では飲食店側も混入を認めており、コーヒー
からの陰イオン界面活性剤の検出のみを行った。測定
した各試験液のピーク面積値は1,000倍希釈液の測定値と
ほぼ同じであった。これより、コーヒーの測定用溶液（最終
希釈20倍）中の洗剤濃度は原液の約1/1,000であり、苦
情者が確認したコーヒー中には原液の1/50濃度の洗剤が
含まれていると推定された。

この飲食店では鍋で作ったシロップを、表示を外した
無色透明のペットボトルに詰め、必要に応じて専用のシ
ロップ入れに移し替える作業を行っていた。その際、シ
ロップと洗浄剤入り容器を取り違えて洗浄剤をシロッ
プ専用容器に移し替えたものと推測された。

V アズキハタによるシガテラ

1. 概要

発生場所 那覇市

原因食品 アズキハタ(コーローミーバイ)

原因物質 シガテラ毒

原因施設 家庭

症 状 餘倦感、妄想、頭痛、発熱、嘔吐、下痢、ドライアイスセッション

9月22日に那覇市内の魚類店でアズキハタ2尾(約50 cm
と約40 cm)を購入した。正午頃に自宅にて、大型の個体
を2回におろし、頭部は半分に切断した。あらを味噌汁に調
理して12:40頃摂食した。15時頃、下痢がかわるような、
喉に違和感を覚えたが、他に異常は感じられなかった。20
時頃、発熱とともに歯間をほおれた刺痛を訴えたところ,
膝付近に鶏足と痛みを訴えた。20時半頃、膝の状態が悪化
したため、飲食をやめた。就寝したが、翌23日午前2時頃、
ひどい吐き気と倦怠感を起して起床し、2:20頃にトイレで
嘔吐した。3:25頃にタクシーで救急外来を受診、5:30頃
で診察を受け、病状を詳しく説明した。この項には吐き気等の症
状はやや改善されていた。6:20頃再診で血圧の低下、血糖
値がやや高い他は異常がないということで帰宅し、7時頃再
度就寝する。9時頃も膝に両足にかけて痛みを感じ日が
覚めた。正午頃には痛みは緩和したものの断続的に激しい倦

-155-
意感を感じるようになった。その後も意感は継続した。24日には意感が認められず、29日朝まで継続した。
特に階段の昇降や椅子へ座る時に強く感じた。この症状は持続的である。30日（9日目）にはウォーキングで3km歩くことができたが、同様に疲労を感じ、通常の状態には回復していなかった。

2. 検体

- 刺身の残品 220 g
- 味噌汁の残品 704 g
- 未加工の魚 598 g

3. 原因物質の検索

(1) 分析方法

味噌汁から魚肉部分を選別したところ、101gしか残っていなかったため、毒性試験には供さず保存した。なお、味噌汁には、魚の口角の部分と思われる部位が含まれており、オレンジ色がかった小豆色の斑点が多数確認できた。

未加工の魚は、本県水産海洋研究センターの海老沢明彦研究主幹によって、アズキハタ A Enyperorodon leucogrammicus と同定され、検分をした後に筋肉部をマウス毒性試験に供した。

シゲタラ毒の検出は、食品衛生検査指針記載9のマウス毒性試験により実施した。

(2) 分析結果

<table>
<thead>
<tr>
<th>品目</th>
<th>毒素濃度 (MU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚肉</td>
<td>0.025 MU/g</td>
</tr>
<tr>
<td>未加工の魚</td>
<td>0.025 MU/g 未満</td>
</tr>
</tbody>
</table>

4. 考察

アズキハタによるシゲタラは比較的まれで、平成7年以降の報告はない。しかし、昭和53年(1988年)と昭和3年(1991年)に食中毒が発生しており、警戒が必要な魚種といえる。今回原因となった魚は、未加工の魚と同種であるとの証言が、確認できた口角の特徴がアズキハタと類似していたため、原因魚種をアズキハタと判断した。なお、確認のためmtDNAの解析を行い仮定である。

VI バラハタによるシゲタラ

1. 概要

- 発生月 日：平成19年10月22日
- 発生場所：那覇市
- 損失者数：6人
- 患者数：3人
- 死亡者数：0人
- 原因食品：バラハタ
- 原因物質：シゲタラ
- 原因施設：家庭

症 状 ドライアイセセンセーション, 腸力感, 腹痛, 前脳・関節痛

10月20日に鮮魚店から購入した魚をおろし、あらは娘と孫（9歳女性）に譲渡した。祖父母は21日に刺身を摂食した。
娘も刺身も一緒に持ち帰ったが、22日にあらを魚汁に調理して摂食し、同居する息子(購入者の娘)は刺身を摂食した。
孫娘も別に持ち帰ったあらを魚汁に調理し、22日早朝、娘とともに摂食した。同日22時頃から腹にしびれを感じ、口に水を含んだ際にサイダーのような感覚を覚えた。23日午前5時頃から悪発がでたが、娘は呑みしびれを感じる程度であった。

なお、発症者はすべて魚汁を摂食しており、刺身だけを摂食した3人には異常は認められなかった。

2. 検体

- 魚切り身 304 g

3. 原因物質の検索

(1) 分析方法

シゲタラ毒の検出は、食品衛生検査指針記載9のマウス毒性試験法により実施した。

(2) 分析結果

- 魚の切り身 0.025 MU/g

4. 考察

原因食品中の毒性は0.025 MU/gであり、中毒検体としては弱い。シゲタラは生よりも、煮た方がより毒性が発症する傾向がある。今回のような魚汁を摂食する3人には発症せず、魚汁を摂食した3人が発症しており、毒性の発現機構に興味が持たれる。

なお、原因魚種は皮の形態からバラハタと推定されたが、mtDNAの解析による同定の必要があると思われる。

謝辞

アズキハタを調査していただけた神奈川県水産海洋研究センターの海老沢明彦研究主幹、mtDNA解析でご協力いただいた当研究所の松田信子研究員に深謝します。

VIII 参考文献

2) 児玉正昭・佐藤茂(2005)フグ毒、厚生労働省監修、食品衛生検査指針理化学編 2005、社団法人日本食品衛生協
会，東京，pp. 661-666.
6) 大城直雅・玉那覇康二(2006)沖縄県における化学物質と自然毒による食中毒および苦情事例—平成17年度—，沖縄県衛生環境研究所報告，40，139-143.