Survey *Strongyloides* in Domestic Dogs in Okinawa Prefecture.

Ryuji ASATO, Noboru KAGEI, Hideo HASEGAWA, Tamiki ARAKAKI, Yoshio ARAKAKI, Eizo KINJO, Masaki SHIMADA and Tamio NAKASONE

Abstract. To determine if a dog plays an important role as a reservoir host of *strongyloides stercolaris* in Okinawa, we carried out a survey on the genus *Strongyloides* infection on stray dogs. The stool samples were obtained from the recta of stray dogs killed in animal centers during the twenty-three-month period between May, 1991 and March, 1993. 1) The agar-plate method is the best method for the stool examination to detect the genus *Strongyloides* infection in dogs. We used the agar-plate and the Harada-Mori methods for the detection of worms in stool and the floatation method for ova. The sensitivity of the agar-plate method for the detection of worms was high (86/87) whereas only 4 cases could be detected by the Harada-Mori method. No ova were found by the floatation method. Most of the worms obtained by the agar-plate method were free-living adults (80/86) and the larvae were found only in 13 cases. The details are shown in Table 2. 2) The adult worms are morphologically identical with *Strongyloides stercolaris*. We obtained the free-living worms by the agar-plate method. The parasitic females were obtained from the intestine of a dog experimentally infected with the filariform larvae collected from agar-gel plates. The results of measurements are shown in Tables 2 and 3. All the morphological characteristics of free-living worms were identical with those of worms obtained from human stool in Okinawa. The morphological characteristics of parasitic females were also in concordance with previous reports. These findings indicate that dogs in Okinawa are infected with *Strongyloides stercolaris*. 3) Stray dogs are playing an important role as a reservoir host of *S. Stercolaris*. The prevalence of infection was unexpectedly high in dogs. The age-prevalence and sex-prevalence distributions of dogs infected with *S. Stercolaris* are shown in Table 4. Differences by sex and age were observed. The prevalence was higher in female dogs than in male dogs. The relatively high prevalence in older age group was also observed. 4) Most of the infected dogs excrete a few worms in stool and a very few dogs discharge many worms. The age-intensity and sex-intensity distributions of infection are shown in Table 5. 5) No correlation between prevalence in humans and dogs was observed. The geographical distribution of *S. Stercolaris* infection of the dogs was compared with of humans. The results are shown in Table 6. 6) Our findings indicate that the risk of infection with *S. Stercolaris* still remains in Okinawa.

Key words. 犬学, 沖縄県, 犬, 多線虫
はじめに
人糞線虫Strongyloides stercoralisの検査はこれまで佐々ら（1958）が報告した試験管内培養法（以下培養法と略す）が最も優れた検査法として普及し、沖縄県には1%前後の糞糞線虫浸潤が認識されていた（予防医学学会資料、1971～1987）。しかし、従来の検査法では、糞糞線虫の少数保有者は不十分な事が指摘され（安里ら、1984、安里、長谷川、1987）その後、Araizaki et al.（1983）によって新しい検査法（普通寒天平板培地法：以下平板培地法と略す）が開発された。同法は1回の検査で糞糞線虫保有者の90%が検出でき、現在のところ、糞糞線虫の検査としては最も優れた検査法である事が確認されたため（安里、1989），本県ではこれまでの糞糞線虫浸潤実態の見直しが迫られ、Asato et al.（1991）によって40才以上の住民には4.3～21.6%（平均11.7%）と高率に浸潤する事が明らかになれてきた。また現在でも人糞肥料の使用者は広範囲に存在し、小・中学生にも極少数には糞糞線虫陽性者が確認され（安里ら，1991a、b，1993）、糞糞線虫の新感染の存在が憂慮されている。今回、著者らは人糞糞線虫S. stercoralisの感染可能な犬を対象にReservoirとしての役割を検討するために沖縄県動物管理センターへ捕獲された犬を対象に新規感染確認を行った。

II 材料及び方法
1. 1990年8月から1993年3月までに沖縄県動物管理センターへ捕獲された捕獲犬を対象に性別、年齢、地域別に行った。
2. 餌便の採取はCO₂安楽死後、剖検によつて直腸便を採取し、2時間以内には検査に供した。
3. 検査は平板培地（28℃、2日間）又は5日間の培養）を主にに行い、一部について培養法、酸性化塩水浮遊法（以下浮遊法と略す）も併用した。浮遊法については採取後5時間以内に検査を終了した。

II 結果
1. 検査法別に見た検出率

<table>
<thead>
<tr>
<th>Method</th>
<th>No. observed</th>
<th>Positive (%)</th>
<th>Agar-gel plate</th>
<th>Harada-Mori</th>
<th>Brine floatation</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>495</td>
<td>20 (4.0)</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>②</td>
<td>722</td>
<td>38 (5.3)</td>
<td>37</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>③</td>
<td>93</td>
<td>4 (4.3)</td>
<td>4</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>④</td>
<td>431</td>
<td>25 (5.8)</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>1741</td>
<td>87 (5.0)</td>
<td>86 (88.9%)</td>
<td>4 (4.6%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

① Combination of the agar-gel plate, the Harada-Mori and the Floatation methods.
② Combination of the agar-gel plate and the Harada-Mori Methods.
③ Combination of the agar-gel plate and the Floatation methods.
④ The agar-gel method.
76頭（88.4%）を占め，幼虫が検出されたのはわずか10頭（11.6%）であった。即ち，平
板培地法では幼虫が検出される確率よりも自由世代の成虫が検出される確率の方が7倍も
高かった。

2．寄生世代成虫の計測値
1990年8月27日に沖縄本島南部の玉城村で
捕獲された3才♂犬から検出された粪線虫の
フィラリア型幼虫を生後6ヶ月の幼犬（♀）
の背後皮下注入し，感染後38日目に遅延陽
性を確認した後，41日目に剖検を行い，腸管
内から567隻の寄生世代の成虫を検出し，その
計測値をTable 2に示す。回収された成虫は卵巣が腸管とよじれる事がなく，それぞれ
がまっすぐに走り，尾部は次第に細くなり，
その先端は尖る事がなく丸く終わる（図1）。
体長，体幅等の計測値も本県の人由来の糞線
虫（Strongyloides stercoralis）と一致して
いた。

Table 2. Measurements of parasitic female worms

<table>
<thead>
<tr>
<th>Host</th>
<th>Dog</th>
<th>Human A-6-81</th>
<th>Human A-21-81</th>
<th>Human A-27-82</th>
<th>Dog (Human strain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported in／by</td>
<td>Okinawa</td>
<td>Okinawa</td>
<td>Okinawa</td>
<td>Okinawa</td>
<td>Little (1966)</td>
</tr>
<tr>
<td>Na. Observed</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Length（μm）</td>
<td>188～243（222±14）</td>
<td>183～269（242±17）</td>
<td>225～295（269±17）</td>
<td>241～283（260±14）</td>
<td>2.1～2.7（μm）</td>
</tr>
<tr>
<td>width</td>
<td>39～45（42.3±1.8）</td>
<td>43～54（48.9±3.1）</td>
<td>33～50（44.0±4.0）</td>
<td>38～50（43.1±2.5）</td>
<td>30～40（37）</td>
</tr>
<tr>
<td>Esophagus length</td>
<td>51～67（57±4）</td>
<td>60～72（64±3）</td>
<td>52～77（64±5）</td>
<td>54～65（59±3）</td>
<td>48～67（57）</td>
</tr>
<tr>
<td>Valva from anterior</td>
<td>137±156（152±9）</td>
<td>129～186（164±12）</td>
<td>107～201（181±24）</td>
<td>160～192（176±10）</td>
<td>1.4～1.8（μm）</td>
</tr>
<tr>
<td>Tail（μm）</td>
<td>52～64（58.9±3.2）</td>
<td>53～66（58.4±4.2）</td>
<td>50～88（57.5±4.7）</td>
<td>48～63（55.2±4.7）</td>
<td>40～70（54）</td>
</tr>
</tbody>
</table>

3．自由世代成虫の計測値
犬及び人から検出された自由世代成虫の計
測値をTable 3に示す。犬から検出された自
由世代は食道が短く，中部および後部に2個
の膨隆部があり，後方の膨隆部は球根状で，
ラブディチス型を呈する。雌虫（図2）は体
長850～978μm，体幅46～57μmで，尾端は
尖り，陰門は頭端から485～704μmの体のほ
ぼ中央腹面にあり，その直後から体は細くなっ
ている。雌虫（図3）は体長850～978μm，
体幅46～57μm，尾端は腹面に向って巻き，

— 43 —
2本の交連刺と1本の副交連刺を有する（図4）。犬5頭から検出された♂7隻、13頭から検出された♀14隻と人由来の♂10隻、♀10隻の計測値を比較すると何れも形態的には人由来の糞線虫S. stercoralisと一致した。

図3．自由世代雄

図4．自由世代雄の尾部

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Measurements of free living worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>3</td>
</tr>
<tr>
<td>Measurement</td>
<td>Dog</td>
</tr>
<tr>
<td>Body length</td>
<td>850～978 μm</td>
</tr>
<tr>
<td>Body width</td>
<td>46～57</td>
</tr>
<tr>
<td>Nerve ring from anterior esophagus length</td>
<td>85～107</td>
</tr>
<tr>
<td>Esophageal bulb length</td>
<td>71～75</td>
</tr>
<tr>
<td>Intestine from anterior cloaca</td>
<td>23～27</td>
</tr>
<tr>
<td>Cloaca from anterior spicule length</td>
<td>130～135</td>
</tr>
<tr>
<td>Spicule length</td>
<td>778～851</td>
</tr>
<tr>
<td>Gutternaculum length</td>
<td>39～40</td>
</tr>
<tr>
<td>Valva from anterior (%)</td>
<td>21～27</td>
</tr>
<tr>
<td>Anus from anterior (%)</td>
<td>44.4～51.7</td>
</tr>
<tr>
<td>Na observed</td>
<td>7</td>
</tr>
</tbody>
</table>
4. 捕獲犬の性別、年齢別に見た陽性率

性別、年齢別に見た粪線虫陽性率をTable 4に示す。性別で見た陽性率は1才未満以外の全ての年齢層で♂よりも♀の方が高くなる傾向を示し、総計では♀3.8％に対し、♀は5.9％の陽性率で、♂よりも1.5倍も高くなっていた。年齢別では♂が2.4～4.9％の陽性率を示し、年齢別には殆ど差が見られないのに対し、♀では1才未満が1.8％に対し、1才以上では5.8～8.0％の陽性率を示し、1才以上では1才未満の3.2～4.4倍も高くなっていた。

Table 4. Age-prevalence distribution of infection

<table>
<thead>
<tr>
<th>Age</th>
<th>Infected/ Observed (%)</th>
<th>Infected/ Observed (％)</th>
<th>Infected/ Observed (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 or less</td>
<td>2／85 (2.4)</td>
<td>3／164 (1.8)</td>
<td>5／249 (2.0)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6／162 (3.7)</td>
<td>17／291 (5.8)</td>
<td>23／453 (5.1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8／189 (4.2)</td>
<td>16／237 (6.8)</td>
<td>24／426 (5.6)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9／183 (4.9)</td>
<td>14／176 (8.0)</td>
<td>23／359 (6.4)</td>
<td></td>
</tr>
<tr>
<td>4 or more</td>
<td>4／144 (2.8)</td>
<td>8／110 (7.3)</td>
<td>12／254 (4.7)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28／763 (3.8)</td>
<td>58／978 (5.9)</td>
<td>87／1741 (5.0)</td>
<td></td>
</tr>
</tbody>
</table>

5. 平板培地法で検出された虫数

約3％の汚便量における平板培地法で検出された虫数の内訳をTable 5に示す。虫体を数える事のできた76頭中、検出された虫体は自由世代の成虫のみが66頭（90.4％）に対し、幼虫のみが5頭（6.6％）、自由世代の成虫及び幼虫の両方が5頭（6.6％）に見られた。平板培地法で検出される虫体は幼虫よりも自由世代の成虫の方が7倍も高くなっていった。

Table 5. Distribution of intensity (The number of worms /3g of stool)

<table>
<thead>
<tr>
<th>No. of worms observed</th>
<th>No. of cases</th>
<th>Total</th>
<th>No. of worms</th>
<th>Leve</th>
<th>♂ (♀) (Ages)</th>
<th>Total</th>
<th>♂ (♀) (Ages)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 9</td>
<td>49 (69%)</td>
<td>49</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>10-99</td>
<td>19 (27%)</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>100-999</td>
<td>2 (3%)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000-</td>
<td>1 (1%)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>

Only male worms were found in 7 cases (3%)．
Only females were found in 35 cases (49%)．
Both sexes were found in 10 cases (27%)．

6. 各保健所管内別に見た糞線虫陽性率

1991年5月から1993年3月までに県動物管理センターへ搬入された不要犬1741頭を対象に平板培地法、浮遊法、浮遊法の併用による糞線虫の検査結果をTable 6に示す。糞線虫は全部で87頭（5.0％）から検出されたが保
Table 6. Geographical distribution of infection

<table>
<thead>
<tr>
<th>Area covered by Healthy center of</th>
<th>Human (over 39 years of age)</th>
<th>Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infected／Observed (%)</td>
<td></td>
</tr>
<tr>
<td>Chuo</td>
<td>225／3516 (6.4)</td>
<td>12／186 (5.5)</td>
</tr>
<tr>
<td>Koza</td>
<td>273／3003 (9.1)</td>
<td>12／320 (3.8)</td>
</tr>
<tr>
<td>Ishikawa</td>
<td>419／3901 (10.7)</td>
<td>4／210 (1.9)</td>
</tr>
<tr>
<td>Nago</td>
<td>467／3946 (11.8)</td>
<td>4／116 (3.4)</td>
</tr>
<tr>
<td>Miyako</td>
<td>996／6509 (15.3)</td>
<td>14／191 (7.3)</td>
</tr>
<tr>
<td>Yaeyama</td>
<td>810／4939 (16.4)</td>
<td>23／441 (5.2)</td>
</tr>
<tr>
<td>Nanbu</td>
<td>18／277 (5.5)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3190／22303 (14.3)</td>
<td>87／1741 (5.0)</td>
</tr>
</tbody>
</table>

IV 考察

S.stercoralisの検査についてはこれまで培
今回の検出された糞線虫は虫体を数えることのできた76頭中、10頭未満が52頭（68.4%）と半分以上を占め、10〜99頭が21頭（27.6%）、100頭以上が2頭、1000頭以上が1頭である。また犬の糞線虫陽性率は1才未満が2.0%に対し、1才以上では4.7〜6.4%（平均5.5%）と、幼犬よりも成犬の方が2倍以上も高く、更に虫数を数える事のできた76頭中1才未満はわずか3頭（3.9%）に見られるのに対し、1才以上では73頭（66.1%）を占め、100才以上の寄生犬も3頭中2頭は1才以上の犬であり、これまで幼犬に感染しやすく、成犬には感染しにくいとの報告（田中、1965、堀江ら、1967、松野、1970）とは異なっている。しかし今回検出された虫体の大部分が従来の検査法では検出できない少数の保存犬であり、多数の糞線虫は幼犬、成犬のどちらにも感染し得るのか否かについては明らかでなく、今回の調査結果と単純に比較する事はできない。またS. stercoralisが人間へ感染した時には自覚症状として数十年の長期間に亘って感染が持続され、現在の本県における糞線虫保有者の大部分も自覚感染による糞線虫保有者であろうと推測されている。しかし犬への感染は人と同様な自覚感染とは異なるであろうと推測される（田中、1965）、犬へのS. stercoralisの感染持続期間は最短3日から最長11ヶ月間（田中、1965、堀江ら、1967、Sandground、1923）の報告もある。しかし感染持続期間においても従来の検査法では検出できない少数の糞線虫が長期間感染を持続される可能性もあり、更に今回の調査で地域別に見た犬糞線虫の浸淫は必ずしも人の浸淫とは一致せず、特に中央保健所管内（那覇市街地）では宮古保健所管内に次ぐ高い浸淫を示し、その感染が人由来か犬由来の糞線虫であるか否かについては明かでない。しかし本県内では現在でも人糞肥料の使用者が広範囲に亘って数%見られ（安里ら、1991 a, b、1992）、S. stercoralisによる土壌の汚染は少数ながら存在する。更に小・中学生にも極少数には感染者が見られる事（安里ら、1991）から今回犬から検出された糞線虫が人由来の
S. stercoralisである事も否定できないが今後、
S. stercoralisの感染実験を行い、感受性、
patent period及び遺伝子学的にも再検討
を加え、犬から検出されるS. stercoralisが人
由来のものであるか否かを明らかにする必要
があると考えられる。

V まとめ
著者らは人糞線虫S. stercoralisの感染可能性
犬を対象にReservoirとしての役割を検討す
るため1991年5月から1993年3月までに沖
縄県動物管理センターへ搬入された野兎を対
象に剖検によって直腸便を採集し、平板培地
法、培養法、浮遊法の併用により、性別、年
齢別、保健所管理内別に糞線虫陽性率調査及び
犬への感染実験を行い、種の同定を行った。
1. 犬の糞線虫陽性率は1741頭中87頭（5.0%
）であった。糞線虫陽性犬76頭中86頭
（98.9%）は平板培地法で検出され、培養法
で検出されたのはわずか4頭（4.6%）で、
犬の糞線虫検査にも平板培地法は人同様に不
欠欠な検査法であった。また浮遊法では糞線
虫卵は1頭からも検出する事はできなかった。
2. 3才♂犬から検出されたフィラリア型幼
虫を生後6ヶ月の♀犬の背部に皮下注入し、
感染後41日目に回収された寄生世代の糞線虫
及び5頭の犬から検出された寄生世代の♀7
株、13頭から検出された♀20株は形態的に人
犬から検出されたS. stercoralisに一致し、沖縄
県の犬に寄生する糞線虫の大部分は
S. stercoralisと考えられた。
3. 沖縄県の全ての保健所管内で野兎の糞線
虫陽性率は1.9〜7.3%（平均5.0%）を示し、
Reservoirとしての重要な役割を果たしている
と考えられる。
4. 犬の糞線虫感染は♀が3.8%に対し、♂
は5.9%を示し、♀より♂の方が高くなる
傾向を示した。更に年齢別では陽性率に大き
な差は見られず、むしろ幼兎よりも成犬の方が
高くなる傾向であった。
5. 糞線虫感染の寄生数は10尾以下が65%を
占め、100尾以上の寄生犬はわずか3頭
（4.0%）を占めるだけである。即ち、糞線虫
寄生犬の大部分は少数寄生犬で、多数寄生犬
は極一部であった。
6. 地域的に見た犬の糞線虫感染と犬の感染
には相関は見られず、野兎と人との間には
相互の感染が成立しているとは言えなかった。

VI 参考文献
安里龍二（1989）今日の日本の寄生虫症－その
特徴と対策, 糞線虫症．とくに日本にお
ける流行と検査法の進歩．最新医学，
44(4):801-803
安里龍二・長谷川英男（1987）糞線虫検出に
用いられる糞便検査法の検討．沖縄県公害
衛生研究所報，21:37-41
安里龍二・長谷川英男・高井昭彦・池戸毅
（1984）：検査，診断（1）糞便検査法に関する
最近の問題．沖縄公衛誌，15:91-95
安里龍二・仲宗根民男・新垣民樹・池戸毅
（1992）糞線虫検査としての普通寒天平板
培地法について．沖縄県公害衛生研究所報，
26:50-59
安里龍二・仲宗根民男・新垣民樹・池戸毅・
金城永三・新垣民樹・斎藤厚・城間祥行・
城間灰光・崎田雅様・影井昇（1993）平成
4年度地域特異感染症（糞線虫）対策事業
報告書．沖縄県公害衛生研究所，25pp.
安里龍二・仲宗根民男・吉田朝幸・新垣民樹
新垣民樹・崎田雅様（1991）沖縄県におけ
る糞線虫新感染の可能性について．沖縄県
公害衛生研究所報，25:51-60
Current status Strongyloides infection in Okinawa. Jap. J. of Tropical
Medicine and Hygiene, 20(2):169-173
安里龍二・仲宗根民男・吉田朝幸・新垣民樹
岩永正明・池戸毅・斎藤厚・城間祥行・崎
田雅完・石原昌清・城間祥行・新城正紀・
崎山八郎・宮城玲子・具志堅浩・池間嘉則
新垣民樹（1991）平成2年度地域特異感染
症対策事業報告書．沖縄県公害衛生研究所，
20pp.
Augustine D. L. and Davey D. (1939)
Observation on a natural infection
with Strongyloides in the dogs. J. Parasite., 25(2):117-119

深原善・茅根士郎・板垣博 (1983) 神奈川県
の犬から得られた糞線虫の一種Strongyloides
planiceps. 日衛会誌, 36:589-592

深原善・茅根士郎・板垣博 (1984) 神奈川県
における捕獲野猫の寄生蠕虫相. 日衛会誌,
37:15-19

深原善・茅根士郎・板垣博 (1984) 神奈川県
の犬におけるStrongyloides属糞線虫の感
染状況. 日衛会誌, 37(12):792-796

深原善・茅根士郎・板垣博 (1986) 純血種犬
に認められた糞線虫 (Strongyloides
stercoralis). 日衛会誌, 39:563-567

堀江牧夫・野田亮二・野田周作・奥村弘
(1967) 犬から得られた糞線虫について. 寄生
虫誌, 16(6):447-457

堀江牧夫・野田亮二・野田周作・犬子堂文
(1974) 犬から得られたStrongyloidesの
一種について 1) 犬とマウスへの感染試験.
寄生虫誌, 23(1):1-7

堀江牧夫・野田亮二・野田周作・犬子堂文
(1980) 犬から得られたStrongyloidesの
一種について 2) 猫への感染実験. 寄生虫誌,
26(1):45-54

堀江牧夫・野田亮二・野田周作・東野淳介
(1981) 猫および野から得られたStrongyloides
について. 寄生虫誌, 30(3):55-63

形井昇・木畑美江・堀内敏・鈴木稔
(1976) 輸入ビーグル犬の寄生虫感染とそ
の問題点. 公衆衛生研究報告書, 25(3):140-144

松野喜六 (1970) 糞線虫およびその治療に関
する研究. 糞線虫の仔犬への感染性および
実験的糞線虫症の Thiabendazole による治
療効果について. 京府医大誌, 79(2):124-131

宮本健司 (1986) 北海道の犬, 猫, ユタキッ
ネに寄生する糞線虫, およびその虫卵とフィ

ラリア型幼虫の抵抗性. 寄生虫誌,
35(6):512-520

宮本健司・久保見 春彦 (1978) 北海道におけ
る人畜共通感染症の研究 1. 犬およびce
獲し犬の寄生虫. 寄生虫誌, 27(4):369-374

沖縄県医師会病院資料 (1972-1987) 年報,
3-18号

大関好明・平野光・信田利馬 (1989) 患犬及
び実験犬にみられる糞線虫とそれを用いた
接種試験. 犬医畜産新報, 817:509-513

斎藤幸一・崎守久生・工藤信男 (1988) 岩手
県における不用犬の寄生蠕虫相について.
寄生虫誌, 37(2):5

Sandground, J. H. (1928) Some study on
susceptibility, resistance and acquired
immunity to infection with Strongyloi-
des stercoralis (Nematoda) in dogs and
cats. Amer. J. Hyg., 8:507-538

佐々学・照屋寛善・池宮喜春・国吉真英・城
間盛吉・金城進 (1958) 沖縄県村の寄生虫
発状況について. 日師会誌, 39:601-604

田中政男 (1992) が抱える主なイヌ
寄生蠕虫調査の文献的考察. 寄生虫技術,
27(1):37-52

田中英夫・仁田治国・鈴木辰夫・鈴木健三
・原邦男 (1987) 輸入維種犬における糞線虫
(Strongyloides sp.) の感染状況. 寄生虫
t技術, 22(1):33-35

田中俊 (1962) 糞線虫. 日本における寄生虫
学研究 pp.241-277

田中俊 (1965) Strongyloides stercoralis
(Barlow, 1876) の犬及びの感受性に就いて.
鹿児島大学医学誌, 17(1):233-236

田代伊東治 (1928) 日本に於ケル「ストロ
ンギ ロイデス・ステルコラーリス」ノ
研究. 統報. 犬ノ「ス・ステルコラーリス」
ニ就テ. 細菌学誌, 204:805-811

山根 (1976) 寄生虫検査に関する糞線虫. 犬医
臨床寄生虫学, 文永堂, pp.612-515