(技術名) ソデイカの釣獲水深と音波散乱層の鉛直分布特性

(要約) ソデイカの釣獲水深と音波散乱層の分布水深の関係について調査した。ソデイカの
種類別漁法による試験操作に行って、漁具に設置した記録型深さ計により釣獲水深情報を得
るとともに、魚群探知機を使用して音波散乱層の鉛直分布特性を観測した。その結果、昼間
に深海に分布する音波散乱層は、概ね 400 〜 500m に分布することが確認できた。またソデ
イカの釣獲水深が、音波散乱層の中および下方であることが確認でき、下方が一番多いこと
が確認できた。

| 水産海洋研究センター海洋資源・養殖班 | 連絡先 098-994-3593 |
| 部会名 | 水産業 | 専門 | 渔業 | 対象 | ソデイカ | 分類 | 指導 |

[背景・ねらい]
1989 年に始まったソデイカ漁業は急速に発展し、本県の基幹漁業となった。これまでソデ
イカを対象に各種調査を実施しており、400m 以浅ではほとんど釣獲されない等の大まかな釣
獲水深（川崎 1992）、産卵生態、日周鉛直移動、回遊生態等が明らかになりつつあるが、正確
な釣獲水深や音波散乱層との関連性についてはわかっていない。そこで本調査では、今まで正
確な情報を得ることができなかったソデイカの釣獲水深について、試験操作によりデータを収
集した。また魚群探知機から得られた音波散乱層の鉛直分布特性とソデイカの釣獲水深との関
連性を分析した。

[成果の内容・特徴]
ソデイカの漁法による試験操作を行って、漁具（図 1）に設置した記録型深さ計によ
り釣獲水深情報（図 2）を得るとともに、魚群探知機を使用して音波散乱層の鉛直分布特性を
観測し、ビデオに録画した後再生し、目視で音波散乱層の鉛直分布水深を確認した後、エクセ
ルソフトを使ってグラフ化した（図 3）。
釣獲時刻とその水深の推定は、漁具に設置した深さ計の深度の急激な変化を基に判定した（例
えば図 2 の ▲ 上端で示した 11 時 08 分から始まった急激な水深の変化）。深度計のデータから、
ソデイカが食い付けたポイントの水深を読み取り、上から 1 番目のソデイカ捕鰹針であれば 8m
を、2 番目のソデイカ捕鰹針であれば 14m を、3 番目のソデイカ捕鰹針であれば 20m を、1 番
下のおもり付捕鰹針であれば 26m をそれぞれ加算した。その方法を使って釣獲時刻（11:08）
と釣獲水深（420m±26m）の図 3 の ▲ で示した。水深データが取得され、釣獲水深を推定できたソ
デイカ釣獲事例は 18 事例（表 1）でそのうち音波散乱層よりわずかに上がった 1 事例、音波散乱
層の中が 7 事例、音波散乱層より下が 10 事例を示した。
1. 本研究結果から、昼間には深海に分布する音波散乱層は、概ね 400 〜 500m に分布すること
が確認できた。
2. 本研究結果からソデイカの釣獲水深が音波散乱層の中および下方（650m まで）であるこ
とが確認でき、下方が一番多いことが確認できた。
3. 釣獲されたソデイカの消化管から、ハダカイワシ属のクロシオハダカの耳石を 5 個体分採
取した（近藤 2009）。このことから、少なくとも音波散乱層の構成物の一つと考えられてい
るハダカイワシ類をソデイカが食べている可能性があることがわたった。

[成果の活用例・留意点]
本研究結果は、今後のソデイカ漁業の旗魚し漁具改良、具体的には現在、県内ソデイカ漁業
者の多くが使用しているワイヤー長 500m をワイヤー長 550m へ変更させる上で有益な知見で
あると考えられる。
図 1. ソデイカ旗流し漁具の構造
図 2. ソデイカ漁具の設置水深とソデイカ推定鈎獲、▲の上端は水深の変化の始点を示す
図 3. 試験操業海域の音波散乱層の鉛直分布とソデイカ鈎獲水深

表1. DSLの上(A)、中(B)、および下(C)で鈎獲されたソデイカの個体数(数字左に示されたA-Cが鈎獲位置を示す)
(水深帯400mは350-400mを示す)

<table>
<thead>
<tr>
<th>ワイヤー長</th>
<th>漁具数</th>
<th>鈎獲個体数</th>
<th>400m</th>
<th>450m</th>
<th>500m</th>
<th>550m</th>
<th>600m</th>
<th>650m</th>
<th>700m</th>
</tr>
</thead>
<tbody>
<tr>
<td>400m</td>
<td>10</td>
<td>1</td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450m</td>
<td>10</td>
<td>4</td>
<td>B2,A1</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500m</td>
<td>16</td>
<td>1</td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550m</td>
<td>10</td>
<td>7</td>
<td>B1</td>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600m</td>
<td>10</td>
<td>5</td>
<td>B2</td>
<td>C2</td>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650m</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700m</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[その他]
課題ID：2008水002
予算区分：県単独事業
研究期間：平成20年～22年度
研究担当者：南、洋一・前田剛次・近藤、忍
発表論文等：平成20-21年度沖縄県水産海洋研究センター事業報告書