壺屋焼製品の高品質化

- 釉薬の貫入についての対策-

赤嶺公一、與座範弘、宮城雄二、花城可英、島袋常秀*

壺屋焼製品に用いる釉('ゆう'又は'うわぐすり'、焼き物の表面を覆っているガラス質材料)は各事業所で
独自の配合を行っているため、一部の業者では製品に意図しない貫入(釉に入ったヒビ割れ)が生じ、水浸み
だけではなく、食品から臭いがつく可能性があった。そこで、貫入が生じない陶器製造技術を確立するため、
各事業所の透明釉等について熱膨張の測定と化学組成からの推定を行い、聞き取り調査による貫入発生の有無
との関係性について検討した。その結果、透明釉の貫入発生に関する知見を得るとともに、テストピースや試
作品により貫入が抑制できることを確認した。

1 はじめに

壺屋焼の製品は、「坏土(素地)」、「化粧土」、「釉」か らなり、製品の高品質化には、それぞれの化学・物理的 調和(熱膨張等)とそれを支える技術の確立が重要だと 考えている。

これまで、壺屋陶器事業協同組合(以下、壺屋組合) と沖縄県工業技術センターは坏土や化粧土の品質安定化 に向けた取組みを行い、両者の安定化に関しては一定の 成果が出始めている1-4)。一方、釉は各事業所が独自の 配合を行っているため、一部の事業所では製品に意図し ない貫入(釉に入ったヒビ割れ)が生じている。貫入は 装飾技法とすることもあるが、陶器製食器などに貫入が 生じると、水浸みだけではなく、食品から臭いがつく可 能性もある。このような釉に発生する貫入は釉と素地と の相互関係であり、両者の熱膨張に大きな差があると貫 入が発生すると言われている。よって、熱膨張の測定は 貫入発生の予測を行う上で極めて重要な試験であるが、 測定試験片の作製に手間と時間がかかる。一方、熱膨張 の迅速評価の例として、釉や坏土の化学組成から線熱膨 張係数(熱膨張)を推定する推定式が提案されている 5,6)

そこで、本研究では貫入が生じない陶器製造技術の検 討を行うため、釉の基礎となる透明釉(方言名:シルグ スイ)、坏土、化粧土を壺屋組合の複数の事業所から採 取して線熱膨張係数の測定と推定を行った。さらに、テ ストピースや試作品による貫入発生及び抑制の確認試験 に取り組んだ結果を報告する。

2 実験方法

2-1 試料、原料、試験片、テストピース、試作品 2-1-1 採取試料

壺屋組合の16事業所(全27事業所)から透明釉18試料、

* 壺屋陶器事業協同組合

坏土16試料、化粧土15試料を採取した。なお赤土3号坏 土を単味で使用している事業所については、坏土を採取 していない場合がある。試料を採取した事業所ごとに無 作為に事業所No. (No.31-46)を付した。透明釉と化粧 土は泥しょう状態、坏土は練土状態で採取した。透明釉 のほとんどは具志頭原土-シルグスイのもと-白色系粘 土(喜瀬粘土や安冨祖粘土)の三成分系からなる試料だ った。坏土は壺屋組合の生産した赤土2号坏土 (SK7,1230℃焼成用)や赤土3号坏土(登り窯でも用 いる高耐火度用)が単味や主原料の試料だった。化粧土 のほとんどは白色系粘土(喜瀬粘土や安冨祖粘土)が主 原料の試料だった。今回採取した試料に使用されている 原料のほとんどは県内原料であった。

2-1-2 テストピースや試作品に用いた原料

貫入の発生する透明釉の原料配合割合を変えてテスト ピースや試作品を作製し、貫入発生及び抑制の確認試験 を行った。貫入の発生する透明釉は2-1-1の透明釉No.2 を事業所No.31から再度採取し、乾燥後用いた。壺屋組 合から入手した具志頭原土と化粧土(安富祖粘土:蛙目 粘土=7:3)はポットミルで5時間湿式粉砕を行い、フ ルイ(目開き150μm)を通し乾燥後用いた。テストピ ースは赤土2号、赤土3号坏土、試作品は赤土3号坏土 を用いた。

2-1-3 化学組成、鉱物組成分析用試料

乾燥処理した2-1-1の試料や2-1-2の原料をサイクロミ ルで粉砕した。

2-1-4 線熱膨張係数測定用試験片

2-1-1の試料の水分量を調整し練土状にした。透明釉 は円柱状に練って成形し、坏土と化粧土は約50×40× 7mmに石膏型で成形した。成形した試料を焼成後に約5 ×5×15mmに卓上カッター等で加工し試験片とした。 焼成には電気炉(ヤマザキ製TSY-18型)を用いて、最 高温度1230℃(SK7)と1250℃(SK8)の2条件、昇温 速度毎時100℃、最高温度保持時間1時間で行った。

2-1-5 色見本用テストピース(透明釉の配合試験)

透明釉の原料は2-1-2の透明釉No.2、具志頭原土、化 粧土を用いた。三角図表を用いた透明釉の配合系と配合 比を図1に示す。

色見本用テストピースは、2-1-2の坏土を約50×40× 7mmに石膏型を用いて成形、化粧掛け後に800℃で素焼 きし、透明釉を掛けて焼成した。焼成は、2-1-4と同様 に最高温度1250℃(SK8)で行った。

2-1-6 実証試験用の透明釉を用いた試作品

陶器製造現場にて、ロクロ成形した8寸(約24cm)皿 等に、実証試験用に調整した透明釉を生掛けによる浸し 掛けを行い焼成した。

2-2 測定項目及びその方法

2-2-1 化学組成

エネルギー分散型蛍光X線分析装置(PANalytical社製

Epsilon3XL)を用いて化学組成を測定した。ルーズパウ ダー法専用容器に2-1-3の試料を詰めて測定した。主要 な8成分(Na₂O、MgO、Al₂O₃、SiO₂、K₂O、CaO、TiO₂、 Fe₂O₃)は検量線法、2成分(ZnO、ZrO₂)はファンダメ ンタルパラメータ法(FP法)により、化学組成を計算 して求めた。なお検量線法の標準試料は国立研究開発法 人産業技術総合研究所 岩石標準試料⁷⁾(JA-3,JF-2,JG-2,JG-3,JGb-1,JH-1)を用いた。強熱減量は1050℃の強熱 法により測定した。

2-2-2 鉱物組成

X線回折装置 (RIGAKU UltimaIV) を用いて2-1-3の試 料を測定した。測定条件はCu管球、40kV、40mA、半導 体高速検出器、スキャン速度は5°/min、2θが5~70° で連続測定を行った。

2-2-3 線熱膨張係数

2-2-3-1 線熱膨張係数の測定

熱膨張率測定装置(エスアイアイナノテクノロジー社 製TMA/SS6300)を用いて昇温速度10℃/分の条件で2-1-4の試験片を加熱し、30~400℃の線熱膨張係数を求めた。

2-2-3-2 化学組成による線熱膨張係数の推定

2-2-1で得られた化学組成を用いて、透明釉は窯業計 算ソフト⁸⁾により、Appenの推定式を用いた線熱膨張係 数を算出し推定値とした。坏土と化粧土も同様に化学組 成を用いて、高嶋の提案する推定式(素地の熱膨張加成 性式)⁶より、線熱膨張係数を算出し推定値とした。

3 実験結果および考察

3-1 鉱物組成の分析結果

代表例として、透明釉No.1、赤土2号、赤土3号坏土、 化粧土(安富祖粘土:蛙目粘土=7:3)、具志頭原土の X線回折測定結果を図2に示す。

透明釉No.1は石英、カルサイト(CaCO₃)、カオリン 鉱物、雲母粘土鉱物等を含む。カルサイトは透明釉のも と(シルグスイのもと)由来と考えられる。赤土2号、 赤土3号坏土及び化粧土は石英、カオリン鉱物、雲母粘 土鉱物、長石等を含む。赤土2号、赤土3号坏土及び化 粧土の鉱物組成は、ほとんど同様と考えられる。具志頭 原土は石英と長石を含むが、ほとんどは非晶質の物質か ら成り立っており、凝灰質の堆積物であることがわかる。

3-2 化学組成の測定結果

透明釉の化学組成を表1、坏土の化学組成を表2、化 粧土の化学組成を表3に示す。透明釉の一部の試料には、 ZnO、ZrO₂の配合が確認された。

表1 透明釉の化学組成

透明釉	事業所	SiO ₂	Al ₂ O ₃	Fe_2O_3	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	ZnO	ZrO ₂	Ig.Loss
1	31	56.9	10.9	1.29	0.31	12.9	0.42	2.30	1.06	-	-	13.8
2	31	51.7	8.1	1.15	0.24	18.2	0.41	2.21	1.10	-	-	16.8
3	32	56.8	8.1	0.92	0.17	15.7	0.32	2.24	1.19	-	-	14.5
4	32	44.1	6.9	1.09	0.16	23.7	0.40	1.97	0.99	-	-	20.6
5	33	51.7	10.8	1.07	0.27	15.8	0.37	2.36	0.93	-	-	16.7
6	34	57.4	9.4	1.12	0.21	12.7	0.65	3.35	1.72	0.55	-	13.5
7	35	59.7	11.9	0.86	0.18	8.9	0.91	4.24	1.67	1.59	-	10.5
8	36	57.6	9.9	1.07	0.26	13.5	0.34	2.48	1.19	-	-	13.8
9	37	53.4	12.1	0.39	0.12	12.4	1.15	4.84	3.48	2.88	-	12.2
10	38	44.7	7.7	1.14	0.22	22.6	0.39	2.27	0.97	-	-	19.9
11	39	52.3	11.3	1.27	0.35	14.7	0.47	2.84	1.06	-	-	15.7
12	40	52.8	11.8	1.24	0.37	14.4	0.52	2.57	0.67	-	-	15.4
13	41	51.0	12.4	1.07	0.51	14.9	2.50	1.60	0.19	-	-	15.9
14	42	55.4	11.0	0.76	0.27	14.0	0.91	2.48	0.94	-	0.56	14.2
15	43	50.6	8.5	1.13	0.24	18.5	0.43	2.38	0.90	-	-	17.2
16	44	36.9	7.6	1.13	0.23	27.4	0.48	1.70	0.49	-	-	23.9
17	45	43.9	10.3	1.18	0.40	22.6	0.52	2.77	0.50	-	-	17.7
18	46	53.7	11.3	1.41	0.35	14.6	0.55	3.59	1.13	0.47	-	13.4

表2 坏土の化学組成

-					. —						(
	坏 土 No.	事業所 No.	SiO ₂	Al_2O_3	Fe_2O_3	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	Ig.Loss
	1	32	60.3	22.7	4.75	0.85	0.30	0.79	2.45	0.23	7.6
	2	33	59.7	23.8	3.98	0.84	0.28	0.71	2.25	0.24	8.2
	3	33	60.8	24.0	2.66	0.85	0.23	0.65	2.63	0.24	7.9
	4	34	59.6	23.4	4.86	0.85	0.23	0.72	2.01	0.20	8.1
	5	37	62.9	23.5	1.58	0.61	0.36	0.43	3.37	0.49	6.7
	6	39	59.5	23.2	4.95	0.83	0.35	0.70	2.11	0.22	8.1
	7	40	59.6	23.9	4.54	0.84	0.24	0.73	2.17	0.24	7.7
	8	41	57.9	24.8	5.19	0.86	0.19	0.78	2.08	0.17	8.0
	9	43	60.3	22.6	5.18	0.90	0.21	0.71	2.21	0.17	7.6
	10	43	61.0	22.3	4.98	0.89	0.24	0.69	2.34	0.21	7.4
	11	43	66.6	21.5	1.02	0.51	0.35	0.48	3.34	0.49	5.7
	12	44	59.1	24.1	4.64	0.83	0.37	0.74	2.00	0.17	8.1
	13	45	58.7	24.3	4.86	0.82	0.28	0.75	1.99	0.16	8.1
	14	42	56.5	24.8	5.65	0.93	0.28	0.86	2.74	0.26	7.9
	15	42	60.7	22.5	4.50	0.80	0.51	0.69	2.23	0.17	7.9
	16	42	57.6	24.7	5.62	0.93	0.28	0.86	2.74	0.26	7.0

表3 化粧土の化学組成													
化粧土 No.	事業所 No.	SiO ₂	Al_2O_3	$\rm Fe_2O_3$	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	lg.Loss			
1	31	66.7	22.5	1.09	0.63	0.07	0.45	1.95	0.15	6.4			
2	32	73.9	16.3	1.12	0.47	0.52	0.34	1.78	0.39	5.2			
3	33	69.5	20.0	0.96	0.59	0.18	0.37	2.46	0.42	5.6			
4	34	58.5	24.2	1.66	0.91	1.65	0.75	3.52	0.29	8.6			
5	35	57.4	27.5	1.14	0.95	0.43	0.56	3.08	0.28	8.7			
6	36	72.9	18.1	0.70	0.44	0.37	0.32	2.28	0.30	4.5			
7	38	60.5	25.6	1.42	0.83	0.13	0.52	2.77	0.20	8.0			
8	39	61.9	24.5	1.48	0.85	0.23	0.62	2.84	0.09	7.3			
9	40	58.6	26.6	1.51	0.77	0.07	0.60	3.78	0.20	7.8			
10	41	62.9	23.7	1.68	0.69	0.20	0.42	2.37	0.26	7.6			
11	42	55.8	28.2	1.68	0.98	0.18	0.72	3.93	0.40	8.1			
12	43	61.5	24.9	0.91	0.91	0.16	0.57	3.81	0.37	6.8			
13	44	67.5	22.3	1.05	0.65	0.08	0.49	1.68	0.05	6.1			
14	45	68.1	22.2	1.07	0.67	0.05	0.53	1.91	0.06	5.3			
15	46	67.6	21.7	0.84	0.78	0.11	0.57	3.06	0.23	5.2			

3-3 線熱膨張係数の測定と化学組成による線熱膨張係数の推定結果

ガラスの分野では、その熱膨張係数と化学成分との間 に加成性が成立するとされており、古くから多くの研究 者により、計算用因子が提案されている⁵⁾。国枝らは各 種文献における釉薬の熱膨張実測値と計算値の比較から、 どの計算用因子が釉薬に普遍的に使用できるかを調べた 結果、Appen因子による計算値が取り扱った釉薬範囲で は実測値と最もよく一致した⁵⁾。そこで、当研究では透 明釉の線熱膨張係数の推定にAppen因子を用いた。

3-2で得られた透明釉の化学組成を窯業計算ソフト⁸⁾ に入力することにより、Appenの推定式を用いた線熱膨 張係数の推定値を得た。透明釉の線熱膨張係数の実測値 は、同一試料において焼成温度間(1230℃と1250℃)で (%) ほとんど差がなかったため、2つのデータの平均値を実 測値とした。透明釉の線熱膨張係数の実測値と推定値を 163 164 165 表4に示すとともに、その関係を図3に示す。

表4 透明釉の線熱膨張係数の実測値と推定値

透明釉	事業所	線	慹膨張係 数	(×10 ⁻⁶ /°C)		
No.	No.	実測値	推定値	補正後の推定値 [※]		
1	31	4.9	5.9	5.0		
2	31	6.6	6.9	-		
3	32	6.2	6.4	-		
4	32	7.8	7.7	-		
5	33	5.3	6.5	5.4		
6	34	5.2	6.6	5.5		
7	35	5.2	6.1	5.1		
8	36	5.3	6.1	5.1		
9	37	6.1	7.8	6.2		
10	38	7.6	7.6	-		
11	39	5.4	6.6	5.5		
12	40	5.2	6.2	5.2		
13	41	4.9	5.8	4.9		
14	42	5.1	6.1	5.1		
15	43	6.6	6.9	-		
16	44	8.1	8.0	-		
17	45	6.6	7.4	-		
18	46	5.1	6.8	5.6		

※図4透明釉のアルミナーシリカ性状図を用いて、透明釉 No.2-4,10,15-17は光沢無、その他は光沢有と判断した。光 沢有のテストピースは関係式を用いて補正した推定値も合わ せて示す。

(%)

透明釉の線熱膨張係数の推定値は、焼成後の試料外観 により'光沢有り'と'光沢無し'の2つにグルーピン グできた。光沢無しの推定値は実測値と近く、光沢有り は実測値よりも高めになる傾向を示す関係式(Y= 1.58X-2×10⁻⁶,X=実測値,Y=推定値)を得た(図3)。透 明釉の焼成後の試料外観はアルミナーシリカ性状図(図 4)から推定することができるため、透明釉の化学組成 から線熱膨張係数が推定できると判断した。しかし、正 確さを論ずるものではなく熱膨張の傾向の推定と、ある 程度の目安を得ることは可能だと考える。

アルミナ、シリカのモル数)

16

42

22

57

21 未測定

₹	長5 圴	「土の	線熱膨	張係夠	表	6 化	粧土の)線熱I	彭張係	数の				
±∓ ±	古 柴 記				線	熱膨張係	数(×10 ⁻⁶ /	°C)	/ 네 씨는 그는	***				緩
יר⊥ No	争未加	石 英	カオリナイト	全長石	123	0°C	125	50°C	15.杜工	争耒所	石 英	カオリナイト	全長石	12
110.	110.				実測値	推定值	実測値	推定値	NO.	NO.				実測値
1	32	28	52	19	5.0	5.3	4.8	5.2	1	31	35	52	13	5.4
2	33	27	55	18	4.7	5.1	4.7	5.0	2	32	50	33	17	6.6
3	33	26	54	20	4.9	5.2	4.8	5.1	3	33	39	42	19	5.4
4	34	28	56	16	4.9	5.1	5.4	5.0	4	34	21	46	33	4.4
5	37	25	48	27	5.3	5.5	5.2	5.4	5	35	16	60	23	6.1
6	39	28	55	17	5.1	5.2	5.1	5.1	6	36	45	37	18	4.2
7	40	27	56	17	4.8	5.1	5.1	5.0	7	38	23	58	19	4.7
8	41	24	60	16	4.8	4.9	5.0	4.8	8	39	26	55	19	4.8
9	43	30	54	17	5.3	5.2	5.8	5.1	9	40	17	58	25	5.1
10	43	30	52	18	5.3	5.3	5.8	5.2	10	41	29	53	18	4.6
11	43	31	42	26	5.6	5.8	5.4	5.7	11	42	11	60	29	4.4
12	44	27	57	16	4.9	5.0	5.3	5.0	12	43	21	52	27	5.1
13	45	26	58	16	5.0	5.0	未測定	4.9	13	44	37	52	11	5.2
14	42	21	58	22	未測定	5.0	未測定	4.9	14	45	37	51	12	5.2
15	42	30	52	18	未測定	5.3	未測定	5.2	15	46	34	46	21	5.7

5.0 未測定

一方、坏土や化粧土のような素地に対する計算用因子の 提案は少ない。素地では例えば長石、珪石、粘土よりな る磁器素地を焼成したとき、融液及びムライトの生成、 石英の残留と転移などの組織・構造の変化があって、熱 膨張プロファイルはそれによって支配される。⁶ 陶器 素地も同様であり、推定が困難なため提案が少ないと推 測する。しかし、高嶋は釉と同じように配合と焼成温度 および焼成雰囲気をうまく配慮すればある程度の目安を 得ることはできると考え、長石、珪石、粘土の各成分の 熱膨張係数、それに焼成温度と雰囲気を配慮した係数を 組み合わせた推定式の提案⁶を行っている。高嶋の提案 する素地における各成分と熱膨張との間の加成性係数の 式(酸化焼成用)を下記に示す。

酸化焼成の場合

長石の係数: 0.06757×10⁻⁶/°C ×組成割合(%) 0.06958×10⁻⁶/°C ×組成割合(%) 石英^{※1}の係数: カオリナイト^{※2}の係数: 0.02420×10⁻⁶/°C ×組成割合(%)

TC=(長石+石英+カオリナイト)×(T0/T1×1.1) TC:算出しようと思う温度の線熱膨張係数 T0:1300°C T1:算出しようと思う焼成温度(1230℃、1250℃) ※1 高嶋は珪石だが、ここでは石英と表記する ※2 高嶋は粘土だが、ここではカオリナイトと表記する

3-2で得られた坏土と化粧土の化学組成を窯業計算ソ フト⁸⁾に入力することにより、長石等の組成割合をノル ム計算より算出し、加成性係数の式を用いた線熱膨張係 数の推定値を得た。

坏土と化粧土の線熱膨張係数の実測値と推定値を表5、 6に示すとともに、その関係を図5に示す。

数の実測値と推定値

線熱膨張係数(×10⁻⁶/°C)

1250°C

推定値

5.3

6.2

57

5.5

4.8

6.0

4.9

5.1

4.9

5.1

48

5.2

5.2

53

5.5

実測値

5.6

7.0

53

4.2

5.8

4.2

45

4.6

5.2

4.6

43

4.8

5.2

52

5.7

1230°C

推定値

5.3

6.3

58

5.6

4.9

6.1

50

5.2

5.0

5.2

49

5.3

5.3

54

5.6

50

壺屋組合の事業所は壺屋組合が生産する坏土を単味か、 あるいは主原料として用いている。そのため、坏土の線 熱膨張係数の実測値は、焼成温度を変えてもほとんどが 4.7~5.4(×10⁻⁶℃)の範囲内にあり、あまり違いが認め られなかった。推定値は焼成温度1250℃のさいに、 1230℃と比較して実測値から外れるデータが多い傾向が ある。しかし、熱膨張の傾向の推定と、ある程度の目安 を得ることは可能だと考える。

化粧土の線熱膨張係数の実測値は坏土の実測値と比較 してばらつきが大きく、推定値は実測値から外れるデー タが多いため推定は難しい。化粧土の線熱膨張係数の実 測値にばらつきがある理由としては、ほとんどの事業所 が独自に配合した化粧土を用いているためだと考える。 これは事業所によって化粧土に求める色や質感、浸し掛 けする際の粘性等に違いがあるためである。多くの事業 所ではそれぞれで保管している白色系粘土(喜瀬粘土、 安富祖粘土等)に、粘土分を補い、白色度を高めるため に市販の白色系粘土等を配合した化粧土を用いている。 県内白色系粘土の在庫がない事業所は、壺屋組合が生産 する化粧土を主に配合した化粧土を用いており、単味で 使用する事業所は少ない。このため、化粧土の性状が各 事業所間で異なり、実測値のばらつきが生じていると考 える。

3-4 線熱膨張係数実測値の差(透明釉-坏土)と聞き取 り調査した貫入発生の有無

陶器製品に貫入が生じているか、各事業所の関係者に 聞き取り調査を行い、3つのグループ(貫入なし、まれ に貫入あり、貫入あり)に分けた。聞き取り調査が未実 施のため、1つは不明とした。

赤土3号坏土単味のデータは坏土No.4,6,8,12であり、 その熱膨張係数実測値の平均値は1230℃焼成で4.9×10⁻⁶℃、1250℃で5.2×10⁻⁶/℃である。赤土3号坏土を単味 で使用している場合は、その熱膨張係数実測値の平均値 を用いた。

聞き取り調査した貫入の有無について、採取した試料 の線熱膨張係数との関係性について検討した。その結果、 線熱膨張係数実測値の差(透明釉-坏土)と、聞き取り 調査した貫入の有無に関係性が認められた(図6)。

・貫入なし、と比較し、、「貫入あり、は透明釉の係数 が坏土より大きい傾向があった。また、「貫入なし、は 1つのデータを除き、ほとんど係数の差がなかったが、

'まれに貫入あり'は平均すると約1.0×10℃ほど透明釉の係数が大きく、試料間のばらつきも大きかった。

・まれに貫入あり、で透明釉の係数が坏土より約 3.0×10⁶/℃大きい試料は、通常用いられる浸し掛けで はなく、コンプレッサーによる釉掛けを行っているため、 ・まれに貫入あり、になっている可能性がある。

前述した関係性は、1230℃焼成、1250℃焼成の両方で

一致する。当報告では記載しないが、線熱膨張係数の推 定値を用いた差(透明釉-坏土)でも同様の傾向だった。

これまでの結果より、貫入の発生には透明釉と坏土の 線熱膨張係数の差が関わっていることが確認できた。言 い換えると、透明釉の係数を坏土に近づけること(透明 釉の係数を小さくすること)で貫入が抑えられると推察 できる。

ほとんどの坏土の線熱膨張係数は4.7~5.4(×10⁶/°C) の範囲内にあり、透明釉は4.9~8.1(×10⁶/°C)と違いが ある。よって、採取した試料においては、透明釉の線熱 膨張係数を考慮することで貫入の発生を抑制できること を意味する。

	表 7	テストピ-	-スに用い	た原料の化学組成
--	-----	-------	-------	----------

原料名 🔪 元素名	SiO ₂	Al_2O_3	Fe_2O_3	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	Ig.Loss
貫入が生じる透明釉	50.3	8.3	1.32	0.27	19.5	0.43	2.30	1.05	16.5
具志頭原土	72.8	12.3	1.78	0.23	1.07	0.41	3.66	2.22	5.5
化粧土(安富祖70,蛙目30)	67.9	22.0	1.04	0.61	0.07	0.44	1.45	0.14	6.3

写真2 テストピース (赤3号坏土)No.3 拡大観察(倍率100倍)

テストピースを用いて貫入の発生する透明釉(坏土と の線熱膨張係数の差が大きい透明釉)の原料配合割合を 変えて、貫入が抑えられるか確認試験を行った(表7、 図1、表8)。配合試験には、2-1-2の原料を用いて、2-1-5の方法でテストピースを得た。

テストピースの外観観察より、赤土2号、赤土3号坏 土ともに、透明釉の線熱膨張係数が大きいテストピース No.1~3に貫入が認められた(写真1)。赤土3号坏土 のテストピースNo.3はマイクロスコープによる拡大観察 (写真2)により、目視では見つけにくい貫入らしきク ラックを確認した。配合条件を変えて透明釉の線熱膨張 係数を小さくすることで、貫入が抑えられることをテス トピースで確認できた。

(%)

表8 テストピースに用いた透明釉の 線執膨張係数推定値

101 111 111 1								
テストピース	線熱膨張推定	E值(x10 ⁻⁶ /℃)						
透明釉No.	補正前	補正後 [※]						
No.1	7.1	-						
No.2	6.9	-						
No.3	6.7	-						
No.4	6.7	-						
No.5	6.5	5.4						
No.6	6.3	5.3						
No.7	6.4	5.3						
No.8	6.2	5.2						
No.9	6.0	5.1						
No.10	5.8	4.9						
No.11	6.1	5.1						
No.12	5.9	5.0						
No.13	5.7	4.9						
No.14	5.5	4.8						
No.15	5.3	4.6						
No.16	5.7	4.9						
No.17	5.5	4.8						
No.18	5.4	4.7						
No.19	5.2	4.6						
No.20	5.0	4.4						
No.21	4.8	4.3						

※図4透明釉のアルミナーシリカ性状図を用いて、テス トピース透明釉No.1-4は光沢無、その他は光沢有と判断 した。光沢有のテストピースは関係式を用いて補正した 推定値も合わせて示す。

3-6 試作品による実証試験(貫入原因の推察と対策)

実証試験に用いる透明釉の配合条件は、3-5で得られ たテストピースの外観や線熱膨張係数の推定値を参考に した。評価者である壺屋組合員により、テストピース透 明釉No.12の配合条件に決定した。この透明釉を用いて、 2-1-6の方法で試作品を得た(写真3)。実証試験用透 明釉の化学組成と線熱膨張係数推定値を表9に、参考に ゼーゲル式(アルカリのモル数を1とした時のモル数) を表10に示す。試作した皿等を目視で観察したところ、 貫入は生じていなかった。ただし、透明釉の泥しょう濃 度を高く調整し、浸し掛けした皿の釉だまり箇所はマイ クロスコープによる拡大観察により貫入が確認できた。 外観から、釉が厚くかかり貫入が生じたと判断した。実 証試験用の透明釉を評価者である壺屋組合員に評価して 頂いた結果、通常の陶器製品(碗や皿)に用いる釉の厚 み程度なら貫入は生じないとの評価だった。外観の光沢 は問題ないが、黄色味がかった釉調となるため無色透明 なほうが使いやすいとの意見があった。

透明釉の黄味の原因は具志頭原土等に含まれる鉄分の 影響だと考えられる。よって、鉄分が多い具志頭原土の 配合割合を少なくするため、代替材として長石等の市販 材料を用いた透明釉の配合について、今後は検討する予 定である。

写真3 試作品による実証試験 8寸皿等

4 まとめ

貫入が生じない陶器製造技術の検討を行うため、釉の 基礎となる透明釉(方言名:シルグスイ)、坏土、化粧 土を用いて線熱膨張係数の測定と推定に取り組み、貫入 の有無との関係性について検討した。

その結果をもとに作製したテストピースや試作品から 貫入が抑制できることを確認し、透明釉の貫入発生に関 する知見を得た。

- 透明釉の線熱膨張係数の推定値は、焼成後の試料 外観により、光沢有り、と、光沢無し、の2つにグ ルーピングできた。光沢無しはAppenの推定式より 求めた推定値が実測値と近く、光沢有りは実測値 よりも高めになる傾向を示す下記の関係式を得た。 Y=1.58X-2×10⁻⁶,X=実測値,Y=推定値 透明釉の焼成後の試料外観はアルミナーシリカ性 状図から推定できるため、透明釉の化学組成から線 熱膨張係数が推定できることが分かった。
- 線熱膨張係数実測値の差(透明釉-坏土)と貫入 の有無に関係性が認められた。このことから透明釉 の係数を坏土に近づけること(透明釉の係数を小さ くすること)で貫入が抑えられることが分かった。
- ほとんどの坏土の線熱膨張係数は4.7~5.4(×10⁻ %C)の範囲内であり、透明釉は4.9~8.1(×10⁻⁶%C)と 違いがある。よって、採取した試料においては、 透明釉の線熱膨張係数を考慮した配合を行うこと によって貫入の発生を抑制できることが分かった。
- 坏土の線熱膨張係数に近づけるため、透明釉の線
 熱膨張係数を小さくしたテストピースや試作品により貫入が抑制できることを確認した。

添田釉 丶 元麦夕	SiO.	AL-O-	Eq. O.	TiO.	C-0	MaO	K.0	No.O	Irlana	線熱膨張推定	宦値(x10 ⁻⁶ /℃)
边明袖 丶 九来石	3102	A12O3	16203	1102	UaU	WigO	R ₂ 0	Na ₂ O	Ig.LOSS	補正前	補正後
実証試験用透明釉	58.3	10.9	1.41	0.29	12.5	0.46	2.61	1.24	12.2	5.9	5.0

表9 実証試験用透明釉の化学組成と線熱膨張係数推定値

表10 実証試験用透明釉のゼーゲル式(アルカリのモル数を1とした時のモル数)

透明釉 📐 元素名	SiO ₂	Al_2O_3	Fe_2O_3	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O
実証試験用透明釉	3.44	0.38	0.031	0.013	0.791	0.040	0.098	0.071

壺屋組合が生産する坏土は壺屋組合の事業所だけでは なく、他の陶器製造業者、焼物教室などに広く利用され ている。当研究で得られた知見を参考に、貫入が生じな い陶器製造の技術相談に対応することで、壺屋組合だけ でなく県内陶器製造業者へもその成果を還元できると考 える。

本研究は、平成28年度企業連携共同研究開発支援事業 の研究課題「壺屋焼製品の高品質化(2016技010)」と して実施した。

謝辞

壺屋陶器事業協同組合関係者の皆様にご協力を頂きま した。ここに記して感謝の意を表します。

参考文献

- 中村英二郎,赤嶺公一,島袋克史,相馬大作,宇佐美信志, 中根史,花城可英,沖縄県工業技術センター研究報告第 16号平成24年度,37-46(2013)
- 2)赤嶺公一,宮城雄二,與座範弘,花城可英,沖縄県工業技術センター研究報告第18号平成27年度,17-20(2015)
- 3)赤嶺公一,宮城雄二,與座範弘,花城可英,沖縄県工業技術センター研究報告第18号平成27年度,43-46(2015)
- 4)赤嶺公一,宮城雄二,與座範弘,花城可英,沖縄県工業技術センター技術情報誌通巻66号vol.19no.1,1(2016)
- 5) 国枝勝利,熊谷哉,三重県窯業試験場年報昭和61年度 (Vol.21),11-25(1986)
- 6)高嶋廣夫,実践陶磁器の科学(1996)
- 7)国立研究開発法人産業技術総合研究所 岩石標準試料 https://gbank.gsj.jp/geostandards/gsj1mainj.html
- 8)土岐市立陶磁器試験場・セラテクノ土岐のオリジナル 窯業計算プログラム

http://www.city.toki.lg.jp/docs/hpg000003412.html

- 編集 沖縄県工業技術センター
- 発 行 沖縄県工業技術センター

〒904-2234 沖縄県うるま市字州崎12番2

- T E L (098) 929-0111
- F A X (098) 929-0115
- U R L https://www.pref.okinawa.lg.jp/site/shoko/kogyo/

著作物の一部および全部を転載・翻訳される場合は、当センターに ご連絡ください。