# シラヒゲウニを使用した地下浸透海水とろ過海水の比較試験

福田 将数·大城信弘

#### 1. 目的

栽培漁業センターの低コスト化のひとつである地下浸透 海水を使った方法でウニを使用してろ過海水との比較実 験を行う。

#### 2. 材料と方法

 $64 \text{cm} \times 26 \text{cm} \times 24 \text{cm}$  の透明衣装ケース 6 個を FRP 水槽にセットし、3 個づつ浸透海水とろ過海水が注水されるよう配管し(図 3 )、流量は 3.6 L/分とし、エアレーションも行った(表 1 )。エサはオゴノリを週1度与えた。実験開始時、 <math>180 尾の全重量を計り、その中から 50 尾の平均殻幅を測定し、6 つのケースごとに 30 尾づつ入れ、実験を開始し、終了時、6 つのケースごとに重量、殻幅を測定した。

### 3. 結果と考察

5/24 の実験開始時、平均重量 4.01g/尾が 6/28 の終了時、浸透水が 30.79g、(26.78g/尾 増)、ろ過水が 47.98g/尾(43.97g/尾 増)でろ過水の方が 17.19g/尾 成長が良かった(表 3)。平均殻幅は 21.42mm/尾が浸透水が 41.21mm/尾(19.79mm/尾 増)、ろ過水が 47.43mm/尾(26.01mm/尾 増)で、ろ過水の方が 6.22mm/尾成長が良かった。生残率も約 20%ろ過水の方が良かった。浸透水の方は生きてるものも棘が短くなっていた。これは水質等の違いが要因と考えられる。また、浸透水、ろ過水において、重量(成長量)、平均殻幅(成長量)、生残率の差に有意な差があるか 2 群の平均値の差の検定を行った結果、重量(成長量)、平均殻幅(成長量)で有意な差があった(表 2)。

表1.溶存酸素量(mg/L)

|      | 5/30 | 6/6  | 6/26 | 平均   |  |  |  |
|------|------|------|------|------|--|--|--|
| 浸透海水 | 8.27 | 8.26 | 7.85 | 8.13 |  |  |  |
| ろ過海水 | 8.26 | 8.5  | 8.56 | 8.44 |  |  |  |

表2.検定結果

|         | significance(%) |
|---------|-----------------|
| 重量(成長量) | 0.22            |
| 殼幅(成長量) | 0.15            |
| 生残率     | 16.70           |

※ 5%未満で有意な差あり

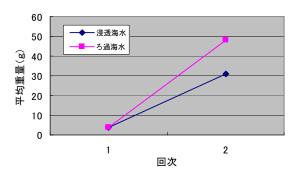



図1.回次ごとの平均重量の変化

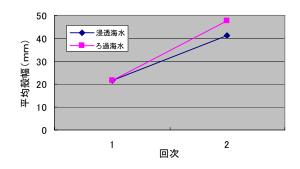



図2.回次ごとの平均殻幅の変化

## 表3.日数ごとの浸透水、ろ過水における重量、殻幅の変化

| 浸透    | 平均水温 24.6℃(23. | 9~25.4°C) | ろ過    | 平均水温 26.3℃(24. | 0~28.5°C) |
|-------|----------------|-----------|-------|----------------|-----------|
| 5月24日 | 4.01 g/尾       | 90 尾      | 5月24日 | 4.01 g/尾       | 90 尾      |
| 6月28日 | 30.79 g/尾      | 71 尾      | 6月28日 | 47.98 g/尾      | 90 尾      |
| 差     | 26.78 g/尾      |           | 差     | 43.97 g/尾      |           |
| 5月24日 | 21.42 mm/尾     | 90 尾      | 5月24日 | 21.42 mm/尾     | 90 尾      |
| 6月28日 | 41.21 mm/尾     | 71 尾      | 6月28日 | 47.43 mm/尾     | 90 尾      |
| 差     | 19.79 mm/尾     |           | 差     | 26.01 mm/尾     |           |
|       | 生残率            | 78.8 %    |       | 生残率            | 100 %     |

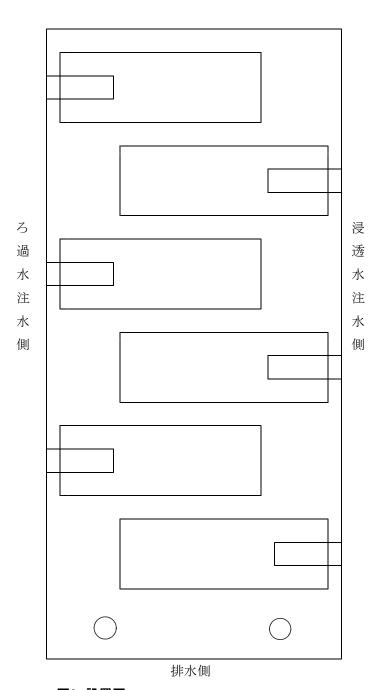



図3. 設置図